How Is The Broadband Light Source Moving Spectroscopy to UV From Near-IR?

Discharge lamps, dye lasers, and optical parametric oscillators were the only valuable sources for spectroscopy in the early 1990s or mid-1980s. However, as optical technologies evolve and their applications broaden, we have been introduced to new light sources and lasers. The broadband light source is one such type of light source that has gained popularity in optical spectroscopy.

In this blog post, we will look at what a broadband light source is, how it works, and how it opens up new opportunities for spectroscopists.

Broadband Light Source Moving Spectroscopy

What Exactly Is A Broadband Light Source?

A broadband light source, also known as a superluminescent source, is a superluminescent diode with a wavelength of emission of 700 nm and a bandwidth of 1700 nm that is perfect for OEM integration. Moreover, it is often used for multi-wavelength tests for measuring wavelength-division-multiplexing components. This implies it has a wide range of applications in the medical, telecommunications, sensing, and measurement industries.

Broadband light sources are utilized for ultrahigh-resolution optical coherence tomography, passive component testing, and multi-channel fiber Bragg grating interrogation, in addition to these applications. Now, let’s take a closer look at how a broadband light source works.

To know the Working Principle of Broadband Light Source, check our blog: Broadband Light Source Moving Spectroscopy and Working Principle.

Comments

Popular posts from this blog

Explained: How Does FP Laser Work?

DFB Laser vs. DBR Laser: 4 Major Differences

Distributed Feedback Laser: Working and Its Importance